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Abstract—In many virtual power plant (VPP) scenarios, nu-
merous individually configured units within a VPP have to be
scheduled regarding both global constraints (i.e. external market
demands) and local constraints (i.e. technical, economical or
ecological aspects for each unit). Approaches for global and
local constraint handling have been discussed in the relevant
literature independently. A hybrid approach is proposed that
combines a decentralized combinatorial optimization heuristic
with the encoding of individually constrained search spaces into
unconstrained representations by means of support vector data
description. The approach is applied to simulated VPP.

I. INTRODUCTION

The transition of today’s electricity grid to a decentralized
smart grid is characterized by an increasing share of distributed
energy resources (DER). In order to cope with stochastic feed-
in effects (i.e. due to fluctuating meteorological conditions), an
efficient management of the DER as well as further appliances
has to be incorporated. However, these numerous small active
units (generators, loads, storages) are individually configured,
and operate rather dynamically in comparison to the classical
large power plants. This implies an increase in complexity for
the control of the system. Furthermore, due to privacy aspects
as well as technical restrictions, a central control scheme may
not be feasible any more. Thus, a paradigm shift to a de-
centralized system based on Information and Communications
Technology (ICT) has been proposed repeatedly (c.f. [1] for
an ongoing approach and further references).

In the contribution at hand, the problem of scheduling
a pool of small active units, in order to jointly produce a
predefined target power profile for a given planning hori-
zon is considered. For example, such a task is present in
the operational management of virtual power plants (VPP).
Referring to [2], the operation algorithm of VPP includes
means to adjust the supply of a VPP with regard to externally
requested ancillary services. For this, an optimization process
for unit commitment is employed. From a central point of
view, the problem can alternatively be formulated as a com-
binatorial optimization problem: First the requested service
(i.e. provisioning of active/reactive power) is translated into
a desired target power profile for the VPP. Then a schedule
has to be found for each unit within the VPP, such that the
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combination of all selected schedules yields the target power
profile. However, a unit has additionally to obey individual
operational constraints. These can be technically rooted hard
constraints (e.g. minimal/maximal idle periods) as well as eco-
nomically or ecologically rooted soft constraints. So the search
for a combination of feasible schedules, which is optimal with
respect to both the global target and these local constraints,
has to be performed in a highly constrained search space. This
yields a two-fold problem, comprising combinatorial aspects
from a global point of view, and constraint handling aspects
at a local level.

As stated in [2], larger VPPs require decentralized oper-
ation, which could be achieved by equipping the individual
DER with decision making capabilities, thus forming a multi-
agent system. This is in line with the call for a paradigm shift
to decentralization as referenced in the first paragraph. Many
problems solved by multi-agent systems are modeled as dis-
tributed constraint optimization problems (DCOP). According
to [3], in a DCOP, a number of independent agents each con-
trol the state of (a subset of) the variables in the system, with
the joint aim of maximizing the global reward for satisfying
constraints. Based on the scope of constraints appearing in
multi-agent systems, constraint handling approaches can be
categorized into different lines of research.

A. Low-Arity (Inter-Agent) Constraint Handling

In the field of DCOPs, individual constraints usually affect
only a small subset of agents. Typical DCOP approaches
are therefore based on the representation of constraints in a
graph, where each node describes an agent, and two nodes are
connected by an edge if there is a constraint affecting these two
nodes. If a constraint affects more than two nodes, some kind
of relaxeration is usually performed. This graph then forms the
communication network of the system. [3] gives an elaborate
overview of approaches in this field.

B. High-Arity (Global) Constraint Handling

If individual constraints affect more than two or three
agents, classical DCOP methods are not feasible any more.
This is especially the case in (distributed) combinatorial op-
timization problems. In these, at least one constraint exists,
which rewards combinations of values globally. If viewed
from the DCOP perspective, this would yield a fully con-
nected constraint graph. Since the action of a single agent in
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this case affects many (all) other agents, the communication
requirements in a distributed setting are enormous. Hence,
approaches in this field focus on reducing the communication
complexity. This can be done by means of a centralized
information repository [4], by broadcasting [5], by using a
hierarchical projection [6], [7] or by applying a self-organizing
mechanism [8].

C. Intra-Agent Constraint Handling

Finally, constraints may additionally appear within single
agents, affecting the decision making of these agents locally.
Since these constraints are not of a distributed nature, they can
be solved by the respective agents using central approaches. A
widely and long since used approach for constraint handling
is the introduction of a penalty into the objective function
that devalues a solution that violates some constraint. In this
way, the problem is transferred into an unconstrained one
by treating fulfillment of constraints as additional objective.
Alternatively, some combinatorial optimization problems
allow for an easy repair of infeasible solutions. In this
case, it has been shown that repairing infeasible solutions
often outperforms other approaches [9]. Another popular
method treats constraints or aggregations of constraints as
separate objectives, also leading to a transformation into a
(unconstrained) many objective problem. A powerful, yet
flexible way of constraint-handling is the use of a decoder
that gives an search algorithm hints on where to look for
feasible solutions [10].

In principle, the above outlined optimization problem of
scheduling DER within a VPP might involve constraints from
all three fields. As an example, power flow management covers
field A, whereas the provisioning of balancing power usually
involves field B. Constraints from field C will be present
regardless the requested service. For the scope of this paper,
and without loss of generality, the focus will be on fields B
and C.

Recently, the Combinatorial Optimization Heuristic for Dis-
tributed Agents (COHDA) has been proposed, which solves
the combinatorial problem of scheduling DER in a distributed,
asynchronous way [8]. This is done by implementing a soft-
ware agent for each unit, and letting the agents coordinate au-
tonomously, thus forming a multi-agent system that meets the
requirements given by [2]. However, the approach primarily
focuses on the combinatorial part of the problem (constraints
from field B). It therefore does not handle the operational
constraints (field C) for each unit directly, but rather assumes
unconstrained search spaces at agent level. For this, a simula-
tion model has been employed in the referenced work, in order
to generate samples of feasible schedules, which were then
used as local search space for each unit, respectively. Although
this eliminates the need to perform a constraint handling at
agent level, such an approach clearly causes a reduction of
the theoretically feasible search space. Upon investigating this
property, it was found that the solution quality produced by the
heuristic improves significantly with increasing sample size.

Unfortunately, large sample sizes require an excessive amount
of memory capacity. Also, this induces a high computational
complexity for the agents in the process of schedule selection.
Hence, an efficient method for searching in a constrained
search space at agent level is necessary.

In the contribution at hand, an extension to the COHDA
heuristic is proposed, that adds intra-agent constraint handling
to the high-arity constraint handling that is already inherently
present in the heuristic. For this purpose, the set of pregener-
ated schedules is replaced with a mathematical model of the
feasible regions of the constrained search space. This yields
an unconstrained representation that can directly be queried
for matching feasible schedules. The approach is based on the
encoding of distributed search spaces for virtual power plants,
as introduced in [11]. The following section describes this
method in more detail.

II. SUPPORT-VECTOR SURROGATE MODEL

A. SVDD-Model for Feasible Regions

As a prerequisite, it is assumed that the feasible region of the
problem has been encoded by support vector data description
(SVDD) as e.g. described in [11]. The approach is recapped
briefly. Given a set of schedules, the inherent structure of
the region where they reside in is derived as follows: After
mapping the data to a high dimensional feature space, the
smallest sphere is determined that encloses all images. When
mapping back the sphere to schedule space, its pre-image
forms a contour (not necessarily connected) enclosing the
sample.

This task is achieved by determining a mapping Φ : X ⊂
Rd → H, x 7→ Φ(x) such that all data from a sample from a
region X is mapped to a minimal hypersphere in some high-
dimensional space H. The minimal sphere with radius R and
center a in H that encloses {Φ(xi)}N can be derived from
minimizing ‖Φ(xi)−a‖2 ≤ R2 +ξi with ‖·‖ as the Euclidean
norm and slack variables ξi ≥ 0 for soft constraints.

After introducing Lagrangian multipliers and further relax-
ing to the Wolfe dual form, the well known Mercer’s theorem
(cf. e.g. [12]) may be used for calculating dot products inH by
means of a kernel in data space: Φ(xi) ·Φ(xj) = k(xi, xj). In
order to gain a more smooth adaption, it is known to be advan-
tageous to use a Gaussian kernel: kG (xi, xj) = e−

1
2σ2
‖xi−xj‖2

[13].
With k = kG the SVDD procedure yields two main results:

the center a =
∑
i βiΦ(xi) of the sphere in terms of an

expansion into H and a function R : Rd → R that allows
to determine the distance of the image of an arbitrary point
from a ∈ H, calculated in Rd by:

R2(x) = 1− 2
∑
i

βikG (xi, x) +
∑
i,j

βiβjkG (xi, xj). (1)

Because all support vectors are mapped right onto the surface
of the sphere, the sphere radius RS can be easily determined
by the distance of an arbitrary support vector to the center a.
Thus the feasible region can now be modeled as F = {x ∈
Rd|R(x) ≤ RS} ≈ X , with X as the set of feasible schedules.



So far, such models have for example been used for ef-
ficiently communicating the feasible region of controllable
energy resources in smart grid scenarios [11]. Only the com-
parably small set of support vectors together with a reduced
version of vector β that contains non zero weight values
(denoted w) for the support vectors has to be submitted. The
model might then be used as a black-box that abstracts from
any explicitly given form of constraints and allows for an easy
and efficient decision on whether a given solution is feasible
or not. Moreover, as the radius function (1) maps to R, it
allows for a conclusion about how far away a solution is
from feasibility. Nevertheless, the model alone does not enable
a systematic constraint handling during optimization. In the
following, a more sophisticated way of integrating such SVDD
surrogate models into optimization is developed.

B. The Decoder Approach

Let F denote the feasible region within the parameter
domain of some given optimization problem bounded by an
associated set of constraints. No assumptions are made on
the constraints. It is known, that pre-processing the data by
scaling it to [0, 1]d leads to better adaption [14]. According
to [11], some energy domain problems require a rescaling of
the domain to [0, 1]d for easier handling, too. For this reason,
optimization problems with scaled domains are considered and
the likewise scaled region of feasible solutions is denoted with
F[0,1]. Now a mapping γ : [0, 1]d → F[0,1] ⊆ [0, 1]d; x 7→
γ(x) is constructed to map the unit hypercube [0, 1]d onto the
d-dimensional region of feasible solutions.

This mapping is achieved as a composition of three func-
tions:

γ = Φ{1
` ◦ Γa ◦ Φ̂`. (2)

Instead of trying to find a direct mapping to F[0,1] the
approach goes through the kernel space. The procedure starts
with an arbitrary point x ∈ [0, 1]d from the unconstrained
d-dimensional hypercube and maps it to an `-dimensional
manifold in kernel space that is spanned by the images of
the ` support vectors. After drawing the mapped point to the
sphere in order to pull it into the image of the feasible region,
the pre-image of the modified image is searched to get a point
from F[0,1]. In the following, these steps are described briefly,
for more details refer to [10].

1) Mapping to the SV induced subspace H(`) with an
empirical kernel map: Let Φ̂`, defined as

Φ` : Rd → R`,
x 7→ k(., x)|{s1,...,s`}

= (k(s1, x), . . . , k(s`, x))

(3)

be the empirical kernel map w.r.t. the set of support vectors
{s1, . . . , s`}. If Φ` is modified to

Φ̂` : Rd → H(`) ,

x 7→ K−
1
2 (k(s1, x), . . . , k(s`, x))

(4)

with K as the kernel Gram Matrix, Kij = k(si, sj), arbitrary
points x, y may be mapped from [0, 1]d to some `-dimensional

space H(`) that contains a lower dimensional projection of the
sphere. Points from F[0,1] go onto or inside, others go outside
the sphere.

2) Re-adjustment in kernel space: In the next step, the
images from infeasible points from outside the sphere have
to be pulled inside. This is done using

Ψ̃x = Γa(Ψ̂x) = Ψ̂x + µ · (a− Ψ̂x) · Rx −RS
Rx

(5)

to transform the image Ψ̂x produced in step 1) into Ψ̃x ∈
Φ̂`(F[0,1]) by drawing Ψ̂x into the sphere towards center a.
Parameter µ allows us to control how far a point is drawn into
the sphere (µ = 1 is equivalent to drawing points right onto
the sphere and therefore to the nearest feasible point, µ = Rx
draws each point onto the center). In this way, each image
is re-adjusted proportional to the original distance from the
sphere and drawn into the direction of the center.

After this procedure Ψ̃x is the image of a point from F[0,1]

in terms of a modified weight vector w̃Γa .
3) Finding an approximate pre-image: As a last step, the

pre-image of Ψ̃x has to be found in order to finally get the
wanted mapping to F[0,1]. As it is hardly possible to find the
exact pre-image (c.f. [12], [15]), an approximate pre-image is
searched, whose image lies closest to the given image using
an iterative procedure after [16]. In the used case (Gaussian
kernel), x∗ is iterated to find the point closest to the pre-image
and approximation Φ{1

` is defined by equation

x∗n+1 =

∑`
i=1(w̃Γa

i e−‖si−x
∗
n‖

2/2σ2

si)∑`
i=1(w̃Γa

i e−‖si−x
∗
n‖2/2σ2

)
. (6)

As an initial guess for x∗0 the original point x is taken and it-
erated towards F[0,1]. Finally, the mapping of an arbitrary point
from [0, 1]d into the region of feasible solutions described
merely by a given set of support vectors and associated weights
is achieved: x∗n is the sought after image under mapping γ of
x that lies in F[0,1].

III. EVALUATION

Originally, each agent in the COHDA heuristic was
equipped with a limited set of pregenerated power profiles for
the unit it represented (see [8] for details on the optimization
process). Using the proposed extension, the agents now each
include a SVDD-Model that represents the search space of fea-
sible power profiles for the according unit. Using the decoder
approach outlined in Section II-B, an agent is able to retrieve
the nearest feasible schedule for an arbitrary target schedule
from this model directly. Thus, each agent is able to search
in an arbitrary large search space very efficiently. In order
to determine the effect of extending the COHDA heuristic
with SVDD-Models, the performance of both versions with
respect to solution quality as well as run-time is compared.
This is done using a small scale VPP composed of only
few DER. Afterwards, the influence of larger population size
(i.e. several hundred DER in a VPP) is examined. Finally,
working memory requirements and computational complexity
is considered.
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Fig. 1. Influence of the sample size of local search spaces on the fitness
(normalized solution quality) in the COHDA heuristic (first four box-charts),
compared to the results of the hybrid approach with SVDD-Model (rightmost
box-chart).

A. Performance Comparison

For identifying the effect of SVDD-Models on the heuris-
tic, the performance of the original heuristic with regard to
different sizes of enumerated search spaces is examined, and
the findings are compared to the hybrid approach which is
proposed in this contribution. The simulated VPP comprised
30 combined heat and power (CHP) devices with an 800 l
thermal buffer store each, using the same simulation model
as in [8]. Figure 1 summarizes the main results as follows.
Solution quality (vertical axis) is measured as absolute cumu-
lated difference between the joint load profile produced by the
finally selected schedules, and the target load profile. Hence,
this is a minimizing fitness function for the optimization
problem. In the figure, this has been normalized to the interval
[0.0, 1.0], where 0.0 is the optimal solution. Each evaluated
configuration has been simulated 100 times. The results are
visualized as box-charts, where the box spans from the upper
to the lower quartile of the results. The median is shown
as horizontal line within a box, whereas the whiskers span
over 1.5 × the interquartile range. Additionally, the average
is denoted with a star marker and outliers are illustrated by
plus markers. The first four box-charts (from the left) show the
results for simulations of the original COHDA heuristic with
sample sizes nsample ∈ {20, 200, 2000, 20000} for the local
search spaces. The rightmost box-chart represents the results
for the hybrid approach with SVDD-Model. Obviously, the
hybrid approach yields excellent solutions in comparison to
the original heuristic.

However, due to the significantly larger search spaces, as
well as some uncertainty introduced by the SVDD model,
the run-time of the hybrid approach varies in a broader range
than in the original heuristic with pre-sampled search spaces.
Figure 2 shows this finding, using the same parameters as
above. Note that, since the run-time strongly depends on the
final fitness that is achieved by the approach, the simulation
steps were counted only until the process reached a normalized
fitness of 0.01. This way, the effect of larger search spaces
being able to achieve a better fitness, and likewise spending
more time on this, was eliminated.

0 50 100 150 200 250 300
simulation steps

20

200

2000

20000

SVDD-
model

si
ze

 o
f l

oc
al

 s
ea

rc
h 

sp
ac

es

Fig. 2. Influence of the sample size of local search spaces on run-time (in
simulation steps) in the COHDA heuristic (lower four box-charts), compared
to the results of the hybrid approach with SVDD-Model (topmost box-chart).
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Fig. 3. Influence of the population size on run-time (in simulation steps) in
the hybrid approach with SVDD-Model.

B. Large Scale VPPs

As stated in the introduction, decentralized approaches are
especially feasible in large scale scenarios. Hence, the behavior
of the hybrid heuristic was analyzed with respect to population
size. For these calculations, the simulation was stopped after
reaching a normalized fitness of 0.01 for the same reason
as in the previous paragraph. In [8], it was shown that in
the original heuristic, run-time increases at most linearly with
larger population sizes. With population sizes nagents ≥ 100,
this effect could also be observed in the SVDD-equipped
variant (see Figure 3). In order to determine the maximal
performance of the approach regarding solution quality in
large scale scenarios, the scenario with nagents = 500 agents
was considered in more detail subsequently. For this, the ac-
cording simulation runs were analyzed without stopping them
manually (and thus letting the heuristic run until termination,
c.f. [8]). Then, a fitness of 5.6e−5 ± 2.0e−5 was achieved on
average. The small scale scenario (nagents = 30, as depicted
in Figure 1) yielded a fitness of 3.9e−3 ± 2.2e−2. Hence,
regarding the simulated setting, in large scale scenarios the
maximal achievable fitness improves approximately by two
orders of magnitude.

C. Working Memory Requirements

Given a planning horizon of q time intervals and nsample
pregenerated power profiles per unit, each agent would have to
store q ·nsample floating point values in the classical approach.
Equipping the agents with a SVDD-Model instead, the storage
requirements are determined by the number of support vectors
that define the search space model. This number is not fixed



however, and depends on the structure of the search space
(i.e. the amount of information to encode, which loosely
depends on q). The experiments showed an average number
of nsv = 25.37 ± 3.04 support vectors for the scenarios
scrutinized in this paper, each comprising q+ 1 floating point
values (incl. weight vector w, see Section II-A). Since solution
quality in the classical approach strongly depends on nsample
(see Figure 1), one would usually choose nsample ≫ 20.
Following, the hybrid SVDD approach yields a reduction of
space requirements from q · nsample to (q+ 1) · 25.37± 3.04,
which is several orders of magnitude expectedly.

D. Computational Complexity

Whenever an agent is notified by an event in its immediate
vincinity, it performs a search for the best matching power
profile regarding the current situation (c.f. [8]). For this,
in the classical approach, an agent performs a sequential
search in the set of pregenerated power profiles. Since the
computational complexity of a sequential search is linear in the
number of elements, this yields a computational complexity
of Oclassic (nsample · q) for a single solution search, where q
denotes the length of each element in the set of pregenerated
power profiles (i.e. the planning horizon).

In the case of using SVDD-Models one has to look at the
complexity of the mapping. Decisive for the complexity of the
mapping is the matrix vector multiplication growing quadrati-
cally with the number of support vectors nsv . Another crucial
question is the number of iterations i necessary for finding the
pre-image with sufficient closeness. Empirically, during the
experiments, a mean number of i = 6.99±6.72 iterations was
observed, for instance, in order to to achieve a convergence
‖x∗m+1−x∗m‖∀m>i ≤ ε below an ε = 1e−7 (see Section II-B),
so the iterations can be neglected in complexity considerations.
Furthermore, as nsv loosely depends on q (see Section III-C),
the computational complexity for the hybrid approach can be
approximated by Ohybrid

(
n2
sv + i

)
≈ Ohybrid (q).

IV. CONCLUSION

In the operational management of virtual power plants
(VPP), the contained distributed energy resources (DER) have
to be scheduled regarding a global goal (i.e. external market
demands). Such a global constraint is accompanied with
arbitrary individual constraints, that confine the feasible action
space of individual units with regard to technical, economical
or ecological aspects. The COHDA heuristic [8] solves com-
binatorial problems by handling global constraints in a decen-
tralized way. On the other hand, the SVDD approach [11] is
able to deliver an unconstrained representation from a highly
constrained local search space. In the constribution at hand,
the approaches are combined, which yields a hybrid heuristic
that is able to handle both global and local constraints in a
distributed combinatorial optimization problem. The approach
is thus able to schedule the DER of a VPP with regard to
an external global target schedule in a decentralized manner,
while simultaneously respecting individual private constraints
at unit level.

The evaluation shows that the hybrid approach yields ex-
cellent solutions regarding the fitness of the optimization.
The run-time of the approach lies within the same range as
the original COHDA heuristic. Furthermore, experiments with
varying population sizes show that the run-time for reaching
a specific solution quality scales linearly with the number of
participating DER. The maximal achievable solution quality
improves in large scenarios. Furthermore, space requirements
for working memory as well as the computational complexity
are reduced by several orders of magnitude.
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