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Abstract 

The future smart energy grid demands for new control paradigms that are able to incorporate a huge number of rather 
small, distributed and individually configured energy resources. In order to allow for a transition of the current cen-
tral market and network structure to a decentralized smart grid, with small units pooling together to jointly trade their 
electricity production on specialized markets, self-organization concepts will become indispensable as an efficient 
management approach. In order to enable ahead of time planning of electricity that incorporates global objectives and 
individually constrained distributed search spaces in such highly dynamic environment, meta-models of constrained 
spaces of operable schedules are indispensable for efficient communication and uniform access. An essential prereq-
uisite for building-up machine learning based domain models of individually constrained search spaces is a training 
set of operable example schedules. Drawing such a sample from an electricity unit’s simulation model is a challeng-
ing task due to the high dimensionality of the problem. We present two computationally feasible sampling methods 
and analyze their complexity and appropriateness. Moreover, the embedding of these methods and the interplay of 
sampling and simulation in a multi agent simulation is presented. 

1. Introduction 

The task of ahead of time planning of active power provision will in future smart grid scenarios become 
much harder to solve. Due to the huge number of small, distributed and individually configured energy re-
sources (producer, batteries as well as consumers) that have to be orchestrated, new decentralized control 
architectures are expected to come in place (Nieße et al., 2012; Sonnenschein et al., 2012). 

Within the project Smart Nord (http://smartnord.de/), an agent based control scheme rooted in market 
mechanisms and discriminated in day ahead active power provision and ancillary services like frequency 
or voltage stability is currently developed. In this paper we will focus on the first use case. 

For any planning scenario, each energy unit has to determine alternative load schedules from that it may 
choose. We assume that many controllable units  may not only offer a set of several alternative load pro-
files but rather a high-dimensional search space with schedules for some given future time horizon. The 
term unit may refer to either a single producer, consumer or prosumer device (energy resource) or to a set 
of devices that is regarded as a commonly jointly ensemble of energy resources (e.g. a household). These 
many search spaces from all the units in a grid serve as input or as basis for decision making for several 
algorithms during the planning and re-scheduling phase like coalition forming (Beer, Sonnenschein & Ap-
pelrath, 2011), schedule-partition or optimization (Bremer & Sonnenschein, 2012), or continuous schedul-
ing for grid stabilizing. These are only some examples eased by surrogate models of the search spaces for 
efficient communication (Bremer, Rapp & Sonnenschein, 2010) and automatic generation of decoders that 
enable standardized usage and integration (Bremer & Sonnenschein, 2013). Such models serve as a means 
for exploring the search space without actually knowing it and substitute for example computationally un-
favorable unit simulations during a huge number of calls of evaluation functions during optimization. In 
contrast to the real (and arbitrarily implemented) simulation models, the surrogate models consist only of a 
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standardized mathematical definitions and a set of defined parameters may also be communicated to other 
agents. 

In order to build such models, representations of the feasible regions that contain the operable schedules 
of a unit are learned by machine learning methods from a set of example schedules. As a training set, we 
initially need a set of operable example schedules drawn from a simulation model. This set represents the 
feasible region and thus serves as a stencil for the surrogate model that later substitutes the simulation 
model. The encoding part that builds the model has already been scrutinized (Bremer, Rapp & Sonnen-
schein, 2010). Here we focus on building the training sample. 

Thus, the rest of the paper is organized as follows: We start with a description of our use case and the 
technical environment. We then derive the necessity for sophisticated sampling methods and describe two 
methods and their embedding into the multi agent environment. We conclude with some results and a 
comparison of the methods’ complexity. 

2. The Active Power Planning Use Case 

Prior to describing the sampling process, we sketch the use case that we aim at in the smart grid domain 
and derive the necessity for generating a training set of schedules. For simplicity, we restrict our descrip-
tion to the part of our multi agent scenario where a coalition of distributed energy resources has already 
formed-up to place a product on some energy market. In case of acceptance, the coalition is supposed to 
deliver a certain joint active power schedule for a given, future time horizon as defined by the final prod-
uct definition after market-clearing. This product schedule might differ from the original plan. The sched-
ule partition used during negotiation might have been sub-optimal for complexity reduction by using in-
complete information or a reduced objective set during coalition forming. Moreover, the partition might 
have become infeasible due to changed conditions for grid compatibility. Anyway, a successive optimiza-
tion step is necessary after market-clearing to find optimal or at least good schedules for each coalition 
member such that the wanted product schedule is jointly resembled by the operations of the group. 

In such smart grid load planning scenarios, a scheduling algorithm (whether centralized or distributed) 
must know for each participating energy resource which load schedules are actually operable (satisfy all 
constraints) and which are not. Each energy resource has to restrict its possible operations due to a set of 
individual constraints. These can be distinguished into hard constraints (usually technically rooted, e.g. 
minimum and/or maximum power input or output) and soft constraints (often economically or ecological-
ly rooted, e.g. personal preferences like noise pollution in the evening). 

When determining an optimal partition of the schedule, exactly one alternative schedule is taken from 
each energy units’ search space of individually operable schedules (individual feasible region) in order to 
assemble the desired aggregate load schedule. To make the necessary information available for each unit, 
the feasible region can efficiently be encoded by a support vector approach as has e.g. been demonstrated 
in (Bremer, Rapp & Sonnenschein 2011). 

3. Modeling the Search Space 

Such a model enables us to guide an arbitrary planning algorithm where to look for feasible solutions. This 
is done by mapping the whole domain onto the feasible region that holds the operable schedules as defined 
by the set of unit specific constraints. Thus an algorithm always operates with a feasible solution (Bremer 
& Sonnenschein, 2013). The search space model for the individually constrained feasible regions of the 
several units within the planning scenario consists of the following information: 

1. A set of example schedules (support vectors on the surface of the enclosing manifold) 
2. Associated weights (for each schedule for calculating the decision boundary of feasibility) 



3. Unit parameters: max power, max cost, etc. 
4. A decision function that allows for discriminating feasible schedules and for ordering schedules 

due to their proximity to the feasible region.  
The most important feature of this model is the enabling of an automatic derivation of a mapping decoder 
that transforms the problem of distributed active power planning into an unconstrained one (Bremer & 
Sonnenschein, 2013). Such a decoder is a constraint-handling technique (Kramer, 2010) that maps the 
constrained problem space to some other not-restricted space where the search operates. Figure 2a shows 
the concept. First, a support vector approach is trained to learn an abstraction of the enclosing envelope 
that contains the training sample. This abstraction may already serve as a classifier that distinguishes be-
tween operable and not operable schedules. In a next step, we derive a mapping from the abstraction that 
maps the whole original unconstrained domain of all schedules to the region of operable schedule. In this 
way, we get a means that guides a search algorithm where to look for feasible solutions and the con-
strained problem is transferred into an unconstrained one that is much easier to solve. 

Figure 1 shows the general work flow of the above sketched concept. In smart grid load planning sce-
narios, an optimization algorithm (whether centralized or distributed) must know for each participating 
energy resource which schedules are actually operable (satisfy all constraints) and which are not. These 
can be determined by simulating the energy unit. Individual constraints can be distinguished into hard 
constraints and soft constraints which are reflected in the example schedules and are thus encoded in the 
model. 

When determining an optimal partition, exactly one alternative schedule is taken from each energy 
unit’s search space of individually operable schedules (individual feasible region) in order to assemble the 
desired aggregate load schedule. At this stage the search space model substitutes the simulation model 
(which is private to the agent). 

 

3.1 Sampling 

The machine learning method for building the above sketched search-space-model needs a training sample 
of feasible schedules as input. Hence, prior to encoding, we have to draw such a sample with the help of 
simulation model of the energy unit. We will discuss such methods in the context of their embedding into 
our simulations. 

3.1.1 Architecture 

The architecture of the sampling system comprises the interplay of different components from different 
layers of our smart grid simulation. We will here focus on the part depicted in figure 2a that is concerned 
with sampling. On the physical layer one would usually expect the physical units (CHPs, heat pumps, 
etc.). During the simulations these are substituted by (usually Matlab/ Simulink) simulation models; or-
chestrated by the mosaik framework (Schütte, Scherfke & Sonnenschein, 2012). These are the units where 
we want to build the search space models of. 

Figure 1: General workflow of the constraint-handling concept. 
 



  
Figure 2a (left): General decoder concept. Figure 2b (right): Embedding into multi agent architecture. 

 
 
 
Each unit is represented by an agent. In order to allow the agent to make assumptions about the future 

behavior of the unit, each agent possesses a behavior model for its unit. While the simulation model emu-
lates the operations and resulting technical states of a unit, the behavior model also allows simulations 
about possible future operations and thus additionally supports what-if-scenarios. The algorithm that inter-
actively queries the behavior model to generate the sample is implemented in a sampler component that in 
turn feeds the encoder with a set of example schedules from which the search space model is built. 

On the level of the multi-agent-system these search space models are exchanged between the agents and 
are jointly used e.g. for negotiation. 

3.1.2 Sampling Methods 

 
Naïve sampling, i.e. guessing a schedule as a whole and then evaluating its feasibility with the help of 

the unit or rather its behavior model is not conductive for schedules with more than about 6 to 8 dimen-
sions. Often, the feasible region of operable schedules is only a very small proportion of the space of all 
schedules. If, for example, for each time period one third of the alternative schedules are prohibited by 
some constraints, then the ratio of constrained and unconstrained space amounts to  
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For the case of schedules with d=96 dimensions with m discrete power levels for each time period this 
would amount to approx. 1.25×10-17. This would get us far too long to get one right. If the proportion of 
infeasible loads drops to ¼ the number of necessary tries is still 1012. In the following, we compare two 
alternative approaches for sampling the model with sufficient efficiency to cope with the above sketched 
problems: 

 
 
 



Successive Sampling: This sampling method iteratively samples shorter time horizons and constructs 
the final schedule by concatenating the sample parts. Hence, we currently draw samples as a successive 
drawing of period-wise guessing: 

1. Guess a random power level for just one period (or any short enough time-horizon). 
2. Validate with the help of a model of the energy unit. 
3. If valid: simulate follow-up state of the unit and goto 1 for the next time period. 

This approach has the advantage of leading far more likely to guesses of valid schedules. The probabil-
ity P for guessing a valid schedule for a single period is already rather high. Allowing for multiple guess-
ing (with number of tries n) results in the even higher probability (Bremer, Rapp & Sonnenschein, 2010) 
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Here, P(n) is the probability for at least one successful try out of n guesses. Successive guessing then re-
sults in an overall probability for successfully guessing a complete schedule of d time periods of 
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As an example, let the probability of correctly guessing a valid power level for a single period be 0.05. 
Allowing for 100 guesses for each period, then the overall probability for guessing a schedule of 96 peri-
ods correctly is still �(�  )!" =0.5655, which is sufficiently high in contrast to 10-125 (chance of guessing all 
96 periods right at once with probability of 0.05 for each period). 

One drawback of this approach is that in this way we get a set of schedules that is dominated by the first 
periods. That means schedules do not have equal probability for being chosen. On the other hand, we are 
not primarily interested in statistical properties of the sample or the underlying density. Instead, we want 
to sound the geometric region where operable schedules reside in. 

Figure 3 shows the interaction of this type of sampler with the unit behavior model inside an agent im-
plementation. The procedure starts with initializing the unit behavior model with the help of parameters 
from the physical unit or – in case of the simulation – from its simulation model. These parameters may be 
directly read from the unit reflecting its current operation state or may be further projected onto a future 
state using the current operation schedule. This initialization defines the initial state of the unit at the start-
ing point from whence alternative schedules are to be determined. This model with the defined starting-
state is given as a reference to the sampler that uses it during the following procedure.  

Each time the sampler starts with determining a new random schedule, it resets the model to the initial 
state. Then, a random power level for only one time period is chosen (uniformly distributed from [Pmin, 
Pmax]) and given to the model for validation. 

In a sub-process, the model takes the power value (also works for a power vector) as a prospective load 
schedule and simulates the operation starting from current state and determines the follow-up state of the 
unit. In contrast to the unit simulation model, the behavior model is not state-less. If the follow-up state is 
feasible and no operation constraint is violated, the follow-up state becomes the current state of the behav-
ior models automata. Elsewise, the operations are withdrawn and the model stays in the previous state. 

Depending on the result of the validation, the sampler continues with a guess for the next period or with 
another try for the current period. If the maximum number of tries for one period is exceeded, the sampler 
gives up for the current schedule and starts with a new one. 

The whole guessing procedure is repeated until the wanted number of schedules has been found. 



Drunken sailor sampling: As an alternative sampling scheme, we scrutinized a Monte Carlo approach 
that starts with an operable schedule of full length obtained from the behavior model. Usually, this sched-
ule should be the one that results from undisturbed operation of the unit resulting from autonomous opera-
tion without any control signals or presetting from the outside. In each step, this schedule is modified at 
least on point in time with a random (Gaussian) mutation of the power level. If the resulting schedule is 
still feasible (checked by behavior model), it is added to the sample set. Else, the sampler takes one ran-
domly chosen schedule from the bag of already found and continues the procedure of random mutations. 

3.2 Results 

Figure 4 shows samples drawn with different approaches. As energy unit, an under-counter boiler has 
been modeled by the behavior model. A traditional under-counter boiler has the simple task of keeping a 
small reservoir of water within a certain temperature band using a two position step control: starting the 
heater whenever temperature falls below lower bound and stopping above upper bound. However, in our 
simulations we assumed to have a device with extended control capabilities allowing a more sophisticated 
control for arbitrary heating as long as temperature stays within the allowed region. Nevertheless, as mean 
we would expect a rather simply regular oscillating behavior as for demonstration purposes we do not 
model any water drawings by humans. The sample that has been drawn with the naïve method shows ex-

Figure 3: Interactive sampling process as dialog between sampler and 
behaviour model for distinguishing feasibility. 



actly this behavior. Naturally, this would have been the best approach but it is the most computationally 
complex one. We have only been able to draw this sample by using a priori knowledge: Due to the specif-
ic parameterization of the unit, power is always within [0, 0.3]. 

On the lower left side, we see a pattern drawn with the successive approach which is dominated by the 
first periods and which is thus a selective sample. Both samples on the right are drawn with the drunken 
sailor approach (three mutations each time on top, one mutation each time on bottom). Clearly, these sam-
ples are dominated by the original undisturbed schedule and one can easily identify the tube around this 
first schedule. 

Figure 4: Results from different simulation runs. 
 
All in all, the successive method looks most promising. Depicted are 5000 schedules each and the re-

spectively resulting temperature profiles below. The time complexity for drawing the sample supports this 
assumption. Figure 5 shows a comparison of the time complexity of all methods. Successive sampling is 
competitively fast compared with the others but delivers the best sample. As can be seen by the tempera-
tures in the successive sample (lower left) the sample is unbalanced but all topological traits are already 
there. This sample can still be improved by using adopted density functions for generating random sam-
ples but on the cost of additional calculation complexity for example with the help of kernel density esti-
mation. In general, density estimation denotes the process of constructing an approximation function for 
an estimate of an unknown probability density based on a set of observed data. Several techniques for es-

  

  



timating the density from data sample have been developed. Building and rescaling a histogram is the 
most basic form of density estimation. Of course, this gives only a discrete estimate. A popular method for 
estimating the unknown density of a sample is the kernel density estimation (KDE) that is also known as 
the Parzen-Rosenblatt window method (Parzen, 1962; Rosenblatt 1956, Binder 1997):  
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If Χ = &�, … , &� ∈ 	,	is an iid sample and K a symmetric (not necessarily positive) function that inte-
grates to zero, #$%(&) gives an estimator for the underlying density of X. In general the kernel K is a con-
tinuous Lebesgue density of almost arbitrary choice. In case of a Gaussian kernel for example, a new ran-
dom sample in the course of the previously described sampling process would then be generated as & = -(&. , ') with normal distribution -(/, 0) with mean / and standard deviation	0. The computational 
complexity for calculating (pseudo) random numbers from the estimation is thus the same as normal dis-
tributed values. For other kernels, we would have to use a random number generator for the respective dis-
tribution. 

4. Conclusion and further work 

We showed that a naïve sampling for drawing random samples as a training set from a simulation model 
of energy resources as input for learning search space models is computationally intractable. We presented 
a method for successively drawing a sample and showed its efficiency. This method is currently applied to 
large scenarios (approx. 50.000 electrical units) in the smart grid domain (http://smartnord.de) and is thus 
applied to many different unit types with differently implemented behavior models (Matlab/ Simulink, Py-
thon, Java, etc.). 

An a priori estimate of the (unit model specific) distributions for generating appropriately distributed 
random guesses may significantly improve the sample quality. Currently, we are working on an extension 
that will use a kernel density estimate as an approximation of the real distribution. 

Figure 5: Comparison of runtime-behavior of the different approaches. 
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