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Abstract—The current upheaval in the electricity sector is lead-
ing to distributed generation schemes and new grid structures.
At the same time, this change is heading for a paradigm shift in
controlling energy resources within the grid. Pro-active schedul-
ing of active power within a (from a controlling perspective)
loosely coupled group of distributed energy resources demands
for distributed optimization methods that take into account the
individual feasible region in local search spaces. We propose a
method that uses support vector based black-box models for
constructing feasible regions for automated, local solution repair
during scheduling and combine it with a distributed greedy
approach for finding an appropriate partition of a desired target
schedule into operable schedules for each participating actor.

I. INTRODUCTION

IN ORDER to allow for a transition of the current central

market and network structure of today’s electricity grid

to a decentralized smart grid, an efficient management of

numerous distributed energy resources (DER) will become

more and more indispensable. Integrating a continuously rising

number of renewable resources means controlling individually

configured and rather small devices in order to cope with

stochastic feed-in effects.

We consider in general producers that are supposed to

pool together with likewise distributed electricity consumers

and prosumers (like batteries) in order to jointly gain more

degrees of freedom in choosing load schedules. In this way,

they become a single controllable entity with sufficient market

power. In order to manage such a pool of DER, the following

distributed optimization problem has to be frequently solved:

A partition of a demanded (by market) aggregate schedule

has to be determined in order to fairly distribute the load

among all participating DER. Optimality usually refers to

local (individual cost) as well as to global (e.g. environmental

impact) objectives in addition to the main goal: Resemble the

wanted overall load schedule as close as possible.

In order to choose an appropriate schedule for each par-

ticipating DER, an optimization algorithm must know, which

schedules are actually operable and which are not. Depending

on the type of DER, different constraints restrict possible

operations. The information about individual local feasibility

of schedules has to be spread appropriately in (distributed)

optimization scenarios, in order to evaluate objectives globally

in distributed search spaces. For this purpose, meta-models of

constrained spaces of operable schedules have been shown

indispensable for efficient communication [1]. Such models

can be seen as black-box representations of the feasible region

of an optimization problem related to scheduling scenarios.

Such models are also used for efficiently evaluating constraints

during the optimization procedure for cases where determining

the feasible region has comparably high computational costs.

Real world problems like this scheduling problem often

face nonlinear or combined constraints. The set of constraints

defines the shape of a region within the search space (the hy-

percube defined by parameter limits) that contains all feasible

solutions. This region is called feasible region and might be

arbitrary shaped or even be discontinuous.

At the same time, support vector machines and related

approaches have been shown to have excellent performance

when trained as classifiers for multiple purposes, especially

real world problems. As a use case related to describing

the region where some given data resides in, Tax and Duin

developed the support vector domain description (SVDD) as a

one-class support vector classification approach that is capable

of learning the region that is defined by some given training

data [2] and has therefore been harnessed for example by [3]

as a model for the feasible region in the smart grid domain.

What we will now add to these two worlds is a new

approach for integrating constraints that are modeled by a

support vector classifier into distributed optimization in a

way, that allows for an efficient navigation within the feasible

region. The basic idea is to construct a mapping from the

whole, unconstrained domain of the problem (the hypercube)

to the feasible region to be able to automatically repair an

infeasible solution during optimization. In this way, the prob-

lem is transferred into an unconstrained one by transferring

any arbitrary solution into a nearby feasible one. All we will

need for constructing this mapping is the set of support vectors

together with the associated weights that make up the black-

box model.

The rest of the paper is organized as follows: We start with

a discussion of related approaches and the background of the

optimization problem that is considered throughout this paper.

Then, we define the mapping function that is used within our

greedy algorithm for scheduling. We conclude with results

from several simulation runs.
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II. RELATED WORK AND PROBLEM BACKGROUND

Within the framework of today’s (centralized) operation

planning for power stations, different heuristics are already

harnessed. Examples from the research sector are for instance

shown in [4] or in [5]. This task of (short-term) scheduling

of different generators is also known as unit commitment

problem and assigns (in its classical interpretation) discrete-

time-varying production levels to generators for a given plan-

ning horizon [6]. It is known to be an NP-hard problem

[7]. Determining an exact global optimum is, in any case,

not possible until ex post due to uncertainties and forecast

errors. In practice the software package BoFIT is often used,

harnessing a mixed integer model with operational constraints

as an integral part of the implementation of the model [8].

This fact makes it hard to exchange operational constraints in

case of a changed setting (e.g. a new composition of energy

resources) of the whole generation system.

Coordinating a pool of distributed generators and consumers

with the intend to provide a certain aggregated load schedule

for active power has some objective similarities to controlling

a virtual power plant (VPP). Within the smart grid domain the

volatile character of such group has additionally be taken into

account. On an abstract level, approaches to control groups

of distributed devices can be roughly divided into centralized

and distributed scheduling algorithms.

Centralized approaches have long time dominated the dis-

cussion [9], not least because a generator may achieve slightly

greater benefit if optimization is done from a global, om-

niscient perspective [10]. Centralized methods are discussed

in the context of static pools of DER with drawbacks and

restrictions regarding scalability and particularly flexibility.

Recently, distributed approaches gained more and more

importance. Different works proposed hierarchical and decen-

tralized architectures based on multi-agent systems and market

based computing [11], [12]. Newer approaches try to establish

self-organization between actors within the grid [13]–[15].

Especially for optimization approaches in smart grid scenar-

ios, black-box models for encoding the feasible region with the

set of operable schedules have been developed [1]. Encoding

of a schedule’s individual cost may also be easily embedded

into the model [16].

The relatively new support vector approach uses support

vector meta-models for black-box optimization scenarios with

no explicitly given constraint boundaries. In general, various

classification or regression methods could be harnessed for

creating such models for the boundary [17]. There are two

main reasons for using such an approach:

1) Substituting computational costs for evaluating the con-

straints by a comparatively easy check through the

model.

2) Efficient communication in distributed environments due

to the small footprint of the model.

Besides, the smart grid domain serves also as example for sce-

narios with (at least partly) unknown functional relationships

of the constraints. The feasible region can sometimes only be

derived with lacking full knowledge on hidden variables or

intrinsic relations that determine the operability of a electric

device and therewith the feasible region. The authors therefore

have their model learned by a support vector data description

approach from a set of operable (feasible) examples.

In a related approach, [18] used a two-class SVM for

learning operation point and bias of a line in a power grid

for easier determining an optimal way back to stable grid

conditions in case of a failure.

In this paper, we will consider the following optimization

problem for a given group (consumers, producers and/

or prosumers) of DER: A schedule for a given future time

horizon is requested (e.g. via an electricity market mechanism)

and is supposed to be jointly operated by the group. Thus, a

partition of the requested target schedule has to be determined

in order to fairly distribute the load among all participants.

For the sake of simplicity, we will consider optimality as

a close as possible adaption of the aggregated (sum of

individual loads) schedule to the requested one. Optimality

usually refers to additional local (individual cost) as well

as to global (e.g. environmental impact) objectives. When

determining an optimal partition of the schedule for load

distribution, exactly one alternative schedule is taken from

each DER’s search space of individual operable schedules in

order to assemble the desired aggregate schedule.

Therefore, the optimization problem is to find any combi-

nation of schedules (one from each DER with X as the set

of possible choices) that resembles the target schedules lT as

close as possible, i.e. minimize the Euclidean distance (‖ · ‖)
between aggregated and target schedule:

‖
∑

i

xi − lT ‖ → min, (1)

such that

xi ∈ Xi.

The following section will explain our approach for solving

this optimization problem with individual acting DER in a

distributed approach. At this, a schedule for d time intervals

will be geometrically interpreted as a point in R
d.

III. ALGORITHM

A. The feasible region

Each DER has to serve the purpose it has been built for

and this purpose may usually be achieved in different alter-

native ways. For example, it is the main purpose of a µCHP

(combined heat and power generator) to deliver enough heat

for varying heat demands in a household at every moment in

time. Nevertheless, heat usage is usually decoupled from heat

production by use of a thermal buffer store. Thus, different

production profiles may be used for generating the heat. This

leads, in turn, to different respective electric load profiles that

may be offered as alternatives to a scheduling controller.

Each DER offers a set of operable schedules for a given

(future) time horizon. We see a schedule as a data vector x ∈
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R
d, with the number of periods d. For each period the i-th

element of x describes the respective amount of electric energy

produced or consumed in this period or respectively the mean

active power output or input for this period.

An operable schedule in this context means that such a

schedule might be operated by the DER without violating any

technical constraint. Moreover, we consider additional non-

technical constraints that may restrict the possible operations

of a DER. Constraints can be distinguished into hard (usually

technically rooted) and soft constraints (often economically or

ecologically rooted or subject to personal preferences).

Examples for hard constraints are:

• Minimum and/or maximum power input/output

• Integrated amount of energy produced over the given time

frame

• Restrictions on thermal buffer storage

• Achieve intended purpose

Examples for soft constraints are:

• Costs (e.g. fuel costs) for operating a certain schedule

• Environmental performance

• Personal preferences (e.g. noise pollution in the evening)

These constraints can be interpreted geometrically. Without

any constraint, the whole hypercube [0, 1]d (active power

between 0 and 100%) would be the region of feasible sched-

ule. With each constraint, a different part (region) of the

hypercube falls of the feasible region, because the respective

schedules are not operable due to the constraint. Only the

finally remaining region (hypercube minus superposition of

all regions prohibited by constraints) is the feasible region of

the DER. Only from this region, schedules might be taken

during optimization.

It has been shown in [1] that the feasible region of operable

schedules of a DER is not necessarily a convex polytope nor a

single connected region. For this reason, concavity and clusters

have to be taken into account, too. Such considerations have

led to black-box models based on machine learning approaches

that may

• capture the topological traits of the feasible region as a

compact description of the set of all operable schedules.

• be easily communicated as a standardized description

within distributed optimization scenarios.

• ease the calculation of the feasibility of a solution during

optimization.

Before we discuss a new way of using this model during

optimization, we will briefly discuss the basic idea of the

model approach.

B. Support vector black-box model for constraints

We will describe the black-box model for the set of fea-

sible schedules for a DER as it has been developed in [1]

based on a one-class support vector data description (SVDD).

The goal of building such a model is to learn the feasible

region of the schedules of a DER by harnessing SVDD

to learn the enclosing boundary around the set of operable

schedules. This task is achieved by determining a mapping

Φ : X ⊂ R
d → H, x 7→ Φ(x) such that all data from a given

region X is mapped to a minimal hypersphere in some high-

or indefinite-dimensional space H. Originally, this model is

used as a classifier that allows for distinguishing operable and

not operable schedules during optimization without explicit

knowledge about the constraints that restrict the operations of

the DER.

The minimal sphere with radius R and center a in H that

encloses {Φ(xi)}N can be derived from

‖Φ(xi)− a‖2 ≤ R2 + ξi ∀i (2)

with ‖·‖ denoting the Euclidean norm and incorporating slack

variables ξi ≥ 0 that introduce soft constraints for sphere

determination.

After introducing Lagrangian multipliers and further re-

laxing to the Wolfe dual form, the well known Mercer’s

theorem [19] may be harnessed for calculating dot prod-

ucts in H by means of a Mercer kernel in data space:

Φ(xi) · Φ(xj) = k(xi, xj). In order to gain a more smooth

adaption, it is known [20] to be advantageous to use a Gaussian

kernel: kG(xi, xj) = e−
1

2σ2
‖xi−xj‖

2

instead of for instance

polynomial kernels.

Putting it all together, the equation that has to be maximized

in order to determine the desired sphere is:

W (β) =
∑

i

k(xi, xi)βi −
∑

i,j

βiβjk(xi, xj). (3)

Maximizing (3) is a problem of quadratic programming

(QP) [21], which is known to be of cubic computational com-

plexity O(N3) with sample size N [22]. For this reason, the

adoption of a technique called sequential minimal optimization

[23] (SMO) is used for solving Eq. 3. SMO breaks up the large

QP problem for SVM training into a series of smallest possible

subproblems which can be solved analytically. In future, if

real-time constraints might be involved, SVM training may be

done incrementally with an online learning algorithm [24]. In

this way, working on the data points one by one, it becomes

possible to break the process with the so far reached result if

a deadline for answering is approaching.

The result (weight vector β) represents the center a of the

spere in terms of an expansion into H:

a =
∑

i

βiΦ(xi). (4)

The distance R of the image of an arbitrary point x ∈ R
d

from a ∈ H can be calculated in R
d by:

R2(x) = 1− 2
∑

i

βikG(xi, x) +
∑

i,j

βiβjkG(xi, xj). (5)

Finally, the radius RS of the sphere S is determined by the

distance to a of an arbitrary support vector as these are mapped

right onto the surface. Thus the original feasible region is now

modeled as

{x ∈ R
d|R(x) ≤ RS}. (6)

The model that has to be communicated consists of the set s

of support vectors and respective weights from β as this is all
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that is needed for reconstructing the boundary that encloses

the feasible region. From β only the non zero components

for the support vectors are necessary. We denote this reduced

weight vector with w.

We will now use this model in a different way. We are inter-

ested in having a means of finding a nearby feasible schedule

next to an arbitrary given schedule. For this purpose, we will

harness a function that maps the d-dimensional unit hypercube

(representing arbitrary schedules in a scaled scenario) onto the

feasible region. In this way, any (in-)feasible schedule will be

converted into a feasible one. The construction of this mapping

is described in the next section.

C. Constructing solutions from the model

For our use case, we need a procedure that generates

a nearby and feasible solution from any given (likely not

feasible) schedule. Near in this context means that the distance

in solution space between given and near feasible solution is

small. This task can be achieved by constructing a mapping

that maps every infeasible point from input space into or

onto the feasible region. We have tested both approaches.

Here, we describe the more general case of mapping into the

feasible region that includes the specialized case. In general,

this mapping can also be used for transforming the whole

optimization problem into an unconstrained one.

Let F denote the feasible region within the domain of

some given optimization problem bounded by an associated

set of constraints. It is known, that pre-processing the data by

scaling it to [0, 1]d leads to better adaption [25]. Considering

optimization problems in the energy sector, rescaling of the

domain to [0, 1]d leads to some advantages [3]. For this reason,

we here consider scaled domains, too, and denote with F[0,1]

the likewise scaled region of feasible solutions. We want to

construct a mapping

γ : [0, 1]d → F[0,1] ⊆ [0, 1]d

x 7→ γ(x)
(7)

that is able to map the unit hypercube [0, 1]d onto the d-

dimensional region of feasible solutions that is bounded by

a set of arbitrary (maybe nonlinear) constraints. We achieve

this mapping as a composition of three functions:

γ = Φ˜1
ℓ ◦ Γa ◦ Φ̂ℓ. (8)

We will define these three functions step by step. Instead

of directly mapping to F[0,1] we will go through the kernel

space. We start with an arbitrary point x ∈ [0, 1]d from the

unconstrained d-dimensional hypercube and map it to an ℓ-

dimensional manifold in kernel space that is spanned by the

images of the support vectors s1 . . . sℓ. After drawing this

mapped point towards the sphere in order to pull it into the

image of the feasible region, we look for the pre-image of the

moved image to get a point from F[0,1]. We will now look at

each step in more detail.

1) Mapping x to the support vector induced subspace H(ℓ)

with an empirical kernel map: Let

Φℓ : R
d → R

ℓ,

x 7→ k(., x)|{s1,...,sℓ}

= (k(s1, x), . . . , k(sℓ, x))

(9)

be the empirical kernel map w.r.t. the set of support vectors

{s1, . . . , sℓ}. If Φℓ is modified to

Φ̂ℓ : x 7→ K− 1

2 (k(s1, x), . . . , k(sℓ, x)) (10)

with Kij = k(si, sj) being the kernel Gram Matrix, then

function Eq. 10 maps points x, y from input space to R
ℓ, such

that k(x, y) = Φ̂ℓ(x) · Φ̂ℓ(y) (cf. [19]).

With Φ̂ℓ we are now able to map arbitrary points from [0, 1]d

to some ℓ-dimensional space H(ℓ) that contains a projection

of the sphere. Again, points from F[0,1] are mapped into or

onto the projected sphere, outside points go outside the sphere

and must be moved in H(ℓ) towards the center in the next step

in order to draw them into the image of the feasible region.

2) Re-adjustment in kernel space: In general, in kernel

space H the image of the region is represented as a hyper-

sphere S with center a (Eq. 4) and radius RS. Points outside

this hypersphere are not images of points from X , i.e. in our

case, points from F[0,1] are mapped (by Φ) into the sphere or

onto its surface (support vectors), points from outside F[0,1]

are mapped outside the sphere. Actually, using a Gaussian

kernel, Φ maps each point into a n-dimensional manifold

(with sample size n) embedded into infinite dimensional H.

In principle, the same holds true for a lower dimensional

embedding spanned by ℓ mapped support vectors and the ℓ-

dimensional projection of the hypersphere therein.

We now want to pull points from outside the feasible region

into that region. As we do have rather a description of the

image of the region, we draw images of outside points into

the image of the region, i.e. into the hypersphere; precisely

into its ℓ-dimensional projection. For this purpose we use

Γa(Ψ̂x) = Ψ̃x = a+
(Ψ̂x − a) ·RS

Rx · µ
(11)

to transform the image Ψ̂x produced in step 1) into Ψ̃x by

drawing Ψ̂x into the sphere. In this way, each image is re-

adjusted proportional to the original distance from the sphere

and drawn into the direction of the center. For the distributed

optimization procedure described in this paper, we set µ = 1
to draw points right onto the surface; which is obviously the

shortest way to feasibility. After this procedure we have Ψ̃x

which is the image of a point from F[0,1] in terms of a modified

weight vector w̃Γa .

3) Finding an approximate pre-image: As a last step, we

will have to find the pre-image of Ψ̃x in order to finally get

the wanted mapping. A major problem in determining the pre-

image of a point from kernel space is that not every point from

the span of Φ is the image of a mapped data point [19]. As

we use a Gaussian kernel, none of our points from kernel

space can be related to an exact pre-image except for trivial
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expansions with only one term [26]. For this reason, we will

look for an approximate pre-image whose image lies closest to

the given image using an iterative procedure after [27]. In our

case (Gaussian kernel), we iterate x∗ to find the point closest

to the pre-image and define approximation Φ˜1
ℓ by equation

x∗
n+1 =

∑ℓ
i=1(w̃

Γa

i e−‖si−x∗

n‖
2/2σ2

si)∑ℓ
i=1(w̃

Γa

i e−‖si−x∗

n‖
2/2σ2

)
. (12)

As an initial guess for x∗ we take the original point x and

iterate it towards F[0,1]. As this procedure is sensitive to the

choice of the starting point, it is important to have x as a fixed

starting point in order to ensure determinism of the algorithm.

Empirically, x has showed up to be a useful guess.

Finally, we have achieved our goal to map an arbitrary point

from [0, 1]d into the region of feasible solutions described

merely by a given set of support vectors and associated

weights: x∗
n is the sought after image under mapping γ of

x that lies in F[0,1].

This model and mapping may be used in different ways

during optimization. Among them are:

• Repair of infeasible solutions.

• Transformation of an constrained to an unconstrained

optimization problem by mapping the whole search space

into the feasible region.

• Computational easy classification of an solution’s feasi-

bility.

• Compact communication of large sets of operable sched-

ules.

Here, we will harness the capability of repairing infeasible

solutions for a distributed optimization approach.

D. The distributed greedy algorithm

With the above sketched preliminaries, we are now able to

define our optimization algorithm. In order to pay attention

to the ongoing decentralization of electricity grid control, it

seems way more promising to design the optimization process

distributed, too. In addition, the chances for success in finding

an exact solution are rather low due to problem size, what

makes a heuristic most suitable.

In this sense, we propose the following greedy algorithm

for approximately solving optimization problem Eq. 1. In our

scenario, we assume one type of agent: the control agent of

a single energy resource with the following responsibilities/

capabilities:

• Simulating the underlying physical device in order to

determine operable example schedules.

• Calculating support vector based black-box modelling.

• Determining the schedule for one’s own physical device

that minimizes the overall loss.

• Participation in optimization.

The procedure for optimizing the aggregated schedule is now

the one depicted in Fig. 1. Within a group of agents A ,

one agent is randomly chosen to start the procedure. Here,

we assume an agent to be in charge of controlling a DER

and to participate in the distributed procedure of determining

A ← List of all agents

if is initiator then

S ← zeros(n, d)
else

S ←aggregated schedule

Snew ← γ(T − (S − Sa))
S ← S − Sa + Snew

if no stop criterion met then

choose random agent A ∈ A

send message with S to A

else

publish solution S

end if

end if

Fig. 1. Greedy algorithm that each agent repeatedly executes for successive
solution improvement starting from a zero solution S with S denoting the ag-
gregated overall solution and Sa denoting the individual current contribution
of the agent.

schedules for each DER such that the aggregated schedule

best fits a given objective schedule. This initiator initializes the

solution with all values to zero. Then, solution improvement

begins. The agent adds up all schedules (known from the

solution object) from all other agents. This is equivalent to

subtracting one’s own schedule from the aggregated solution.

In a next step, the difference δ of this sum to the desired

target schedule is determined. This difference δ represents the

optimal schedule for the current agent in the following sense:

if he would be able to deliver this schedule, the target could

be reached exactly. Therefore, the agent now determines the

nearest schedule to δ that is actually operable by the device.

This nearest schedule can be easily calculated with the help of

the mapping γ that has been described in the previous section.

Function γ maps an arbitrary schedule (in our case difference

schedule δ) into the region of feasible schedules and delivers

the respective operable schedule that is nearest to δ, because it

uses the shortest trace to the feasible region to move a point.

In this way, each DER chooses a schedule that is a compro-

mise of being feasible (automatically ensured by mapping γ)

and doing one’s own best in bringing forth the overall solution

towards the wanted adaption to the target schedule as much

as possible each time when it is the respective agents turn.

As a stop criterion, we chose a maximum number of

iterations at which the term iteration refers to one execution

of the procedure in Fig. 1 by one agent.

By one after another, the overall solution (the aggregated

schedule) is successively improved. We have chosen to activate

the agents in a random order, but a round robin approach may

also do if each agent knows about his successor. In this way,

the algorithm is distributed and sequential as only one agent

has the token to work at a time. If the objective is to adapt

to a given target schedule, the only information that has to be

passed around (or made globally available) is the aggregated

overall solution (as sum of all local solutions) and the desired

target schedule. This is sufficient as each agent may remember
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his own local schedule that has been determined previously.

All other information can be determined by local information.

Clearly, the actual optimization is distributed but sequential.

But, the most time consuming part – namely the computation

of mapping γ – can be done in advance and fully parallel,

what in turn allows for faster optimization afterwards without

a need for considering constraints anymore.

IV. SIMULATION RESULTS

Fig. 2. Relationship between electrical and thermal power for an EcoPower
CHP; modified after [28].

So far, we have tested our approach on several simulated

energy resources. Among them are: co-generation devices with

thermal buffer store and a simulated residential thermal energy

demand as well as simulated controllable cooling devices.

We will here focus on results from CHP. All simulations

have been done with power scaled to [0, 1]. All simulations

incorporating a µCHP also encompass the simulation of the

respective household that is heated by this µCHP. This implies

a simulation of the respective heat demand, heat use, different

weather conditions or heat losses by thermal diffusion pro-

cesses.

Fig. 3. Optimization result for a winter day scenario with 10 chp (EcoPower
with randomly initialized storage charging) for a time horizon of 48 15-minute
intervals.

For our simulations, we used the model of a modulating

CHP-plant with the following specification:

• Minimum electrical power: 1.3 kW,

Fig. 4. Optimization result for a spring day scenario with 10 chp (EcoPower
with randomly initialized storage charging) for a time horizon of a whole day
in 15-minute intervals.

Fig. 5. Optimization result for a scenario with 30 chp for 96 15-minute
intervals. This amounts to a 2880-dimensional search space.

• Maximum electrical power: 4.7 kW,

• Minimum thermal power: 4 kW,

• Maximum thermal power: 12.5 kW,

• After shut down, a device has to stay off for at least 2 h.

The relationship between electrical (active) power and thermal

power was modeled after Fig. 2. In order to gain more

degrees of freedom for varying active power, each CHP is

equipped with an 800 ℓ thermal buffer store. Thermal energy

consumption is simulated by a model of a detached house with

its several heat losses (heater is supposed to keep the indoor

temperature on a constant level) and randomized warm water

drawing for gaining more diversity among the devices.

For each simulated household, we implemented an agent
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(a)

(b)

(c)

Fig. 6. Convergence for different scenarios: 6(a): 5 CHP and, 8 periods;
6(b): 100 CHP, 8 periods, 6(c): 10 CHP, 96 periods.

capable of simulating the CHP (and surroundings and auxiliary

devices) on a meso-scale level with energy flows among

different model parts but no technical details. All simulations

have so far been done with a time resolution of 15 minutes for

different forecast horizons. We have run several test series with

each CHP randomly initialized with different buffer charging

levels, temperatures and water drawing profiles.

Fig. 3 shows a result (solid line in the top chart) for a

group of 10 CHP that try to reach a given objective schedule

(dashed line). The resulting schedules for each single CHP are

depicted in the middle chart with the allowed active power

band for modulation highlighted in grey. The bottom chart

shows the temperatures in the thermal buffer store resulting

from operating the respective electrical schedules; again with

the allowed range highlighted in grey.

The desired objective schedule has been randomly chosen.

These schedules have been generated in a way that they are of

a reasonable magnitude order according to the capabilities of

the optimized CHP, but without any guarantee that a perfect

adaption might be achievable.

Fig. 4 shows a similar simulation run, but for a time horizon

of a whole day. Fig. 5 shows the result for optimizing a larger

bunch of 30 CHP. As might have been expected, the result

Fig. 7. Optimization result for a scenario with 750 chp for 96 15-minute
intervals. This amounts to a 72000-dimensional search space.

TABLE I
CPU TIME FOR ALGORITHM AND SIMULATION REGARDING DIFFERENT

PROBLEM SIZES. QUALITY AS MEAN EUCLIDEAN DISTANCE IN kW FOR

nA AGENTS, k ITERATIONS AND SCHEDULES OF d INTERVALS OF 15 MIN.

d nA k tsim / s topt / s QUALITY

8 10 75 4.71 ± 0.23 0.006±0.008 0.054±0.023

8 100 750 45.2 ± 0.74 0.061±0.009 0.045±0.02

32 100 250 382.59 ± 27.24 0.049±0.008 1.05±1.09

96 10 750 251.4 ± 4.5 0.498±0.127 0.049±0.08

schedule gets closer to the target schedule if more CHP are

involved. This is mainly due to the availability of more degrees

of freedom for the system as a whole.

As a next step, we scrutinized the speed of convergence

and convergence behaviour of our algorithm. Fig. 6 shows

the result of some measuring series. It is noticeable that the

fitness (the difference between aggregated and target solution)

strictly decreases notwithstanding the uncoordinated, heuristic

character of the approach. The number of necessary iterations

is acceptably small, what can also be seen in Table I, where

some mean CPU time results (Java implementation on Core

2, 3 Ghz) for different scenarios are listed. The simulation

time tsim reflects the time that is necessary for the whole

simulation including the preceding calculations of the set

of feasible schedules for each agent, for the calculation of

all support vector models and all mapping functions γ on

a single machine. These calculations would in a distributed

productive system be done in parallel. The time necessary for

the mere optimization is comparably small. In order to be

able to simulate larger scenarios, we are currently thinking of

distributing the simulation, too.

Finally, Fig 7 shows a result from a larger mixed scenario

with two different types (in power magnitude) of CHP. Having
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different DER in a scenario, often leads to a better adaption to

the target schedule as has also been seen in similar scenarios

with a mixture of CHP and refrigerators e.g. in [3].

V. CONCLUSION

We have presented a new approach for distributed optimiza-

tion and control of distributed energy resources for smart grid

scenarios with a large number of controllable entities. This

approach is based on two new methodologies:

• A strategy for handling constraints in distributed opti-

mization scenarios that may also be used for finding

nearby feasible solutions by harnessing a learned model

of the feasible region.

• A well scaling greedy algorithm for harnessing that

strategy during the search for an optimal partition of the

requested schedule for different DER.

We have demonstrated that the greedy heuristics scales well

with the number of participating devices because the most

expensive calculations may be done in parallel in advance by

each controllable device. We are now starting the development

of a distributed simulation environment as systematic testbed

for further algorithms that integrate the sketched mapping

procedure for further optimization solutions and use cases

from the smart grid domain.
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