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Abstract  

Future energy systems will increasingly rely on distributed and renewable energy sources (RES).  Electrical feed-in 
of photovoltaic (PV) power plants and wind energy converters (WEC may vary greatly, the supply of electrical pow-
er from RES and the demand for electrical power are not per se matching. and in addition, with a growing share of 
generation capacity especially in distribution grids, the top-down paradigm of electricity distribution is gradually re-
placed by a bottom-up power supply. This altogether leads to new problems regarding a safe and reliable operation 
of power grids. In order to address these challenges, the notion of Smart Grids has been introduced. In this context, 
autonomous agents and the concept of self-organising systems are key elements in order to intelligently use the in-
herent flexibilities of distributed generators, power storage systems and power consumers. Our research goal is to 
optimise the local utilisation of RES feed-in in a given power grid by intelligently integrating both supply and de-
mand management measures and with special respect to the electrical infrastructure.  In this paper first we show how 
an intelligent load management system for battery charging/discharging of electrical vehicles EVs can increase the 
locally used share of supply from PV systems in a low voltage grid. For a reliable demand side management of large 
sets of appliances dynamic clustering is necessary. We show how control of such clusters can affect load peaks in 
distribution grids. Additionally we give a short overview how we are going to expand an attempt of self-organised 
clusters of units to a virtual control centre for a dynamic virtual power plant. 

1. Supply-demand-matching considering renewably energy sources 

Future energy systems will increasingly rely on distributed and renewable energy sources (RES). In 2030, 
between 50% (BMWi 2010) and 67% (BMU 2012) of the gross electricity demand of Germany are ex-
pected to be covered by electric feed-in from RES; in 2050, this share is expected to grow up to 85% 
(BMU 2012). In course of this politically driven evolution of an energy system, new challenges regarding 
the successful and sustainable integration of RES both into the power grid and into energy markets have to 
be addressed: As photovoltaic (PV) power plants and wind energy converters (WEC) rely on solar radia-
tion and wind, respectively, their electrical feed-in may vary greatly and unforeseen in small amounts of 
time (stochastic fluctuation of RES feed-in). In addition, the supply of electrical power from RES and the 
demand for electrical power are not per se matching, that is there are times of high electrical feed-in and 
low power demand, vice versa. Even with today’s comparatively low share of RES, these situations may 
yield negative electricity prices at the European Energy Exchange (EEX) (Wissing 2012) due to the 
(short-term) surplus of power generation. Regarding the electrical infrastructure, the integration of RES 
increases the strain on power grid assets (e.g. power transformers) as today’s power grids where historical-
ly designed for a top-down power transmission and distribution. With a growing share of generation ca-
pacity especially in distribution grids, the top-down paradigm is gradually replaced by a bottom-up power 
supply, leading to new problems regarding a safe and reliable operation of power grids (e.g. voltage con-
trol and power grid protection measures). 
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In order to address these challenges, the notion of Smart Grids has been introduced. The European 
Technology Platform (ETP) defines Smart Grids as “electricity networks that can intelligently integrate 
the behaviour and actions of all users connected to it - generators, consumers and those that do both – in 
order to efficiently deliver sustainable, economic and secure electricity supplies” (EU ETP 2010). Intelli-
gent behaviour is thus a key element of Smart Grids and a prerequisite for an optimized utilisation of re-
newable energy supply. Taking the outlined challenges into account, our research goal is to optimise the 
local utilisation of RES feed-in in a given power grid by intelligently integrating both supply and demand 
management measures and with special respect to the electrical infrastructure. We aim to match supply 
and demand of electrical power on a local scale, taking grid load into account. In this context, autonomous 
agents and the concept of self-organising systems are key elements in order to intelligently use the inher-
ent flexibilities of distributed generators, power storage systems and power consumers. 

In section 2 of this paper we show how an intelligent load management system for battery charg-
ing/discharging of electrical vehicles (EVs) can increase the locally used share of supply from PV systems 
in a low voltage grid. Additionally, this load shifting method allows reducing the average load at the local 
transformer station significantly. Integration of large sets of small appliances into load management raises 
questions of predictable behaviour of these devices as well as scaling problems for control algorithms. For 
a reliable demand side management of large sets of appliances clustering is necessary which is outlined in 
section 3. Section 4 of this paper gives a short overview how we are going to expand an attempt of self-
organised clusters of units to a virtual control centre for dynamic virtual power plants. This virtual control 
centre includes distributed methods for schedule optimization as well as rescheduling of units. 

2. Increasing local utilisation of supply from PV systems using batteries of EVs 

In this section we show how a (central) intelligent control method for smart charging of electric vehicles 
(EVs) can increase the local use of PV supply in a low voltage (LV) power grid. Additionally, we show 
that grid constraints – i.e. the strain on local grid assets such as power transformers – can implicitly be 
taken into account by such a control method (Tröschel et al 2011). 

A major challenge regarding smart charging of EVs is simultaneity. Consider the following thought ex-
periment: In a small urban low-voltage (LV) grid comprising 70 (high-income) households, 20 battery 
electric vehicles (EVs) are located. The local power transformer has been laid-out for a maximum load of 
200kVA, which is quite comfortable regarding the households’ yearly peak load of about 120kW. Each 
EV has a maximum storage capacity of 30kWh and a maximum charging power of 10kW (three-phase 
connection point). The EVs are mostly used for commuting, that is on work-day evenings they are all re-
turned more or less at the same time to their charging station. Uncontrolled charging – starting to charge 
an EV’s battery as soon as it is connected to the charging station – can then result in a massive strain on 
the local power infrastructure: When all 20 EVs charge at the same time (i.e., with high simultaneity) up 
to 200kW charging power is needed in addition to the power demand of the 70 households. As the trans-
former has been designed to allow a maximum load of only 200kVA, the resulting thermal strain may lead 
to an increased aging or even damaging of this expensive asset. 

With this worst-case scenario in mind, we developed a smart charging algorithm with two major design 
goals: 1) reduce the simultaneity of the charging process, and 2) maximise the local utilisation of electric 
feed-in from PV systems. Thus, not only the strain on power grid assets should be reduced, but the EVs 
should also be charged with as much renewable energy as possible. The basic idea is as follows: We intro-
duce a central management server at the substation level, such that the charging process in an LV grid is 
being managed by a single optimising instance. As soon as the EV has connected to the charging station, 
four parameters are transmitted: The expected parking time (provided by the user), the current state of the 
battery, and a charging goal (e.g. 85 %) with some flexibility (e.g. ± 15 %). The central server's objective 
is to generate plans in such a way, that the sum of all plans approximate a given load curve while each in-



dividual plan reaches the charging goal within the parking time available. Thus, the EVs’ users’ needs are 
taken into account, which is a prerequisite for acceptance of smart charging concepts (Schlager et al 2011, 
Weider et al 2011). The optimisation process comprises the following three phases (for a more in-depth 
discussion please refer to (Vornberger et al 2011)): 

1. Minimum charging: In phase one, the batteries are charged up to a minimum state of charge (SOC), 
e.g. 20% of their maximum capacity. This ensures a minimum mobility guarantee for the users. 

2. Distributed charging: In phase two, charging is distributed over a number of charging slots (e.g. 15-
minute time slots over one day) in order to reduce simultaneity. The target load curve – the desira-
ble resulting power demand at substation level – is taken into consideration to find ‘good’ slots. For 
that purpose, the numerical difference between the currently expected load (the sum of all charging 
loads) and the target load is calculated for each time slot. Based on this difference, a charging prob-
ability is calculated for each time slot, such that slots with a higher difference will be assigned a 
higher charging probability. Based on these probabilities, a random combination of charging slots is 
chosen. This ensures that charging will more likely occur in times where extra load is required. 

3. Additional charging / discharging: Provided the EVs support discharging, that is acting as a genera-
tor from the grid’s point of view, in the third phase additional time slots for charging and discharg-
ing are selected in order to minimise the difference of expected load and target load. 

For the evaluation of our approach, we relied on the Smart Grid simulation framework mosaik (Schütte 
2011). Based on data from a local distribution system operator, we modelled an LV grid comprising 71 
private households and conducted several simulation studies – each over the course of one simulated year 
– with varying shares of PV systems and EVs. Table 1 lists the setup for the results discussed below: 
 

Table 1: Simulation study setup 
Influencing factor Value 

EV share 50% of the households have an EV 
Installed PV peak power 160kWp, shared amongst 50 plants with 3,2 kWp each 
Grid type Rural grid, EWE Netz GmbH 
Charging strategies Uncontrolled, controlled, vehicle-to-grid (V2G) 
Battery capacity 31 kWh 
Charging/Discharging power ≤ 3,7 kW single-phase,  ≤11 kW three-phases 

 
Using this setting, we compared three different charging strategies regarding their performance when 

trying to balance supply (from local PV systems) and demand (from households and charging EVs): 
• Uncontrolled charging: EVs are charged as soon as they are connected to their charging point until 
their SOC reaches 100% (or until they are disconnected by the user). 
• Controlled charging: EVs are charged relying on the central smart charging strategy discussed 
above. However, EVs do not have the capability to feed power back to the grid. 
• Vehicle-to-grid (V2G): EVs are charge relying on the central smart charging strategy discussed 
above and have the capability to feed power back to the grid. 

 
Local utilisation of supply from PV systems (cf. Figure 1): 
Regarding the utilisation of electric feed-in from local PV systems, the vehicle-to-grid approach yielded 
the best results. Due to the EVs’ capability to feed electrical power back to the grid in times of high de-
mand, a very large share of the PV feed-in was used to satisfy the demand of both households and charg-
ing of (other) EVs. The electrical power exported to superordinate grid levels was thus minimised. It is al-
so noteworthy that the controlled charging approach wasn’t able to significantly improve the local utilisa-
tion of PV feed-in compared to uncontrolled charging. This somewhat unexpected effect results from the 



Figure 1: Results regarding the local utilisation of PV feed-in 

Figure 2: Probability density function of the  

local power transformer‘s load 
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fact that the EVs’ batteries were in 
this case only discharged when driv-
ing. Thus, the total annual energy 
throughput was significantly lower 
than in the case of the vehicle-to-grid 
approach. 

 
Strain on local power assets: 

Regarding the strain on the LV 
grid’s power transformer, also the ve-
hicle-to-grid approach performed 
best: Almost half of the (simulated) 
time, the transformer load was close 
to zero - that is supply and demand 
were actually balanced (cf. Figure 2). 
Additionally, the peak loads were 
significantly reduced compared to 
the other charging approaches (and 
even compared to the load without 
EV). Again, controlled charging only 
improved the situation little. 

 
In summary, we were able to 

demonstrate that an intelligent usage 
of flexibilities in LV power grids 
(here: smart charging of the EVs’ 
batteries) is able to match supply and 
demand locally, thus improving the 
utilisation of renewable energy and 
simultaneously reducing the strain on 
local power assets such as power transformers. Due to the centralised optimisation and the high computa-
tional complexity, however, this approach is only feasible for very limited numbers of systems that are to 
be controlled. 

3. Self-organised clustering of small appliances for load balancing  

In this section we demonstrate how decentralised organized clusters of devices, e.g. household appliances 
or EVs as well, can be used for control purposes, e.g. reduction of load spread in a medium voltage grid. 
This method especially aims at improved scalability – a major weakness of centralised approaches such as 
the one discussed in the previous section – and is explained in more detail in (Lünsdorf 2012). We explain 
this approach in a bottom-up manner.  

An essential technical prerequisite for this approach is a hardware controller embedded into the control-
lable devices, offering a two-way communication channel to some external control agent. The controller 
needs to be able to intervene in the operation mode of its device and trigger a temporal change in con-
sumption.  An example for such an intervention is shown in Figure 3. The user has activated his washing 
machine at 12 o’clock but delayed the start by 3 hours and allowed the external control agent to override 
his setting and start the washing machine at any time in this timeframe. The override is performed by 
sending a signal (in the example in Figure 3 this happens directly at 12 o’clock) to the device’s controller. 
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Figure 3: Load curve of a controlled device 

The premature start of the washing ma-
chine causes a temporal change in pow-
er consumption relative to the normal 
operation mode: an increased consump-
tion is followed by a later decrease in 
consumption. For friges a similar con-
trol method has been discussed in 
(Stadler et al 2009). 
 

The effect of these possible overrides 
in power consumption of a device need 
to be predicted in the form of a time-
series of power demand values, called a 
power schedule. In general, such a power schedule is a series of values for (active) power consumption 
within a given time frame based on a resolution of e.g. a quarter of an hour, where power demand (or con-
versely  supply) is fixed within these slots.  

For most appliances such as dish washers or washing machines the expected effects of override signals 
differ over the course of a day. The forced start of a washing machine as depicted in the example above is 
only possible if the user has activated the device, and almost nobody starts a washing machine at night. To 
overcome this problem, a day is sampled into time slots and the predictions are calculated individually for 
each time slot. With a resolution of 15 minutes this amounts to 96 predictions (power schedules) for a day. 
The effects of overrides are subject to uncertainty and vary significantly between device types. Because of 
these uncertainties (like activation time and delay in this example), predictions are usually subject to sub-
stantial errors which can be expressed by time-series of variances for each time slot. 
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Figure 4: Prediction of change in power consumption (left) and estimated prediction error (right) for a washing machine 

Figure 5: Prediction of change in power consumption (left) and estimated prediction error (right) for 500 washing machines 
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Figure 6: Power load curve of a simulated urban settlement with controlla-
ble loads 

The controller needs to calculate the expected effects of operation mode overrides for every time slot as 
well as the estimated prediction errors of these effects. This is based on a simple statistical model of ob-
servations of the devices’ usage in the past. Figure 4 shows the predicted effects of operation mode over-
rides for a washing machine in 96 time-series on the left hand side. The right hand side shows the ex-
pected error of this prediction.  
This unreliability of effects of controlling a single device motivates partitioning of devices into clusters. 
By controlling all devices in a cluster at once, the weak law of large numbers can be exploited (Georgii 
2004). Applied to a simultaneous operation mode override this means that the deviation to the expected 
change eventually converges to zero if the cluster size becomes big enough. Under the assumption that the 
effects of overrides are uncorrelated3, it is even possible to calculate the error of grouped overrides simply 
by summing up the individual variances. The effect of the weak law of large numbers is shown in Figure 
5. The left hand side is showing the predicted power change as in Figure 4 but this time for a cluster of 
500 washing machines. In comparison to Figure 4 the error rate has dropped by an order of magnitude. 

The partitioning of a set of devices into device clusters (i.e. subsets) is subject to several soft-
constraints. Devices should only be added to a cluster if the relative standard deviation of the consumption 
change does not fall below a given threshold; this ensures clusters not becoming too big – the control 
agent needs several independent clusters for its purposes. Furthermore the effect of overrides should not 
compensate each other and have roughly the same duration. Finding a good partitioning of devices is an 
NP-hard problem also known as Coalition Structure Generation (CSG) (Michalak et al 2010).  

Prediction updates are pushed autonomously and irregularly from the device controllers into the system. 
The system that implements the partitioning needs to be able to adapt to these continuous updates. Fur-
thermore, spatial proximity (w.r.t. the power grid) must be considered too. Clusters should be formed con-
taining devices from neighbouring low power grids to support local demand-supply matching (cf. the dis-
cussion regarding electric vehicles in Section 1). Apart from consisting of an arbitrary amount of actors, 
self-organising systems feature the ability to adapt to changes in the environment. This makes a self-
organising system a perfect fit for partitioning devices into clusters. Each local substation is associated 
with an agent in the self-organising system that optimizes clusters in its vicinity (e.g. neighbouring LV 
grids). It is not feasible to search for an 
absolutely optimal partitioning as the 
predictions may be updated at any time. 
Instead the agents employ a heuristic to 
compute ‘good’ clusters. In summary, 
the self-organising system outlined in 
(Lünsdorf 2012) is continuously improv-
ing the partitioning of devices and is 
forming clusters which respond reliably 
(e.g. within given error-bounds) to exter-
nal control signals. Based on such a par-
titioning into clusters and their expected 
reaction to control signals, an external 
control agent, e.g. situated at a utility, 
can compute schedules of control signals 
to control the power consumption of de-
vices in these clusters.  

                                                      
3 This assumption doesn’t hold for household appliances sometimes. An earlier start of a washing machine for example may cause 
the user to also activate the tumble dryer earlier. However this occasional correlation is neglected in this paper. 



An example examined in a simulation study deals with the load spread reduction (max. difference in 
load reduced by local supply) of a small urban settlement. The scenario consists of about 35.000 house-
hold devices (refrigerator, freezers, washing machines, tumble dryers, dishwashers, heat pumps and 
charger stations for electric vehicles) in the year 2020. The distribution and parameterisation of the devic-
es is based on the SmartA study (Stamminger et al 2012). A week in March has been examined in the sce-
nario, from which Figure 6 excerpts the power load curves for a working day. Two simulation runs were 
conducted. No overrides of loads were issued in the first run to simulate the normal consumption. This da-
ta is used as a reference for the second run, where overrides were scheduled to reduce the load spread. 
While it was not possible to increase the minimum load in the early morning hours4, the peak load could 
be reduced by about 6% during work days and by 4% during the weekend (5.74% on average). This eval-
uation shows that it is possible to reliably control large sets of devices for load shifting using decentralised 
and self-organising clustering. In the outlined use-case this technique allowed to shift 1.2MWh on average 
per day, thus exploiting the inherent flexibility of widely used (small) power consumers in order to shift 
power consumption to time slots with high feed-in from renewable and distributed energy systems. 

4. Market-oriented dynamic virtual power plants 

In the near future – in Germany at the latest after expiration of the renewable energy act (EEG) – RES will 
have to offer their power at an energy market. While it is an interesting research problem how products at 
future energy markets will be structured, it is unquestionable that the power supply from RES has to be 
refined to fulfil requirements of high reliability of supply within an agreed schedule for several hours or 
days. Thus, small suppliers like PV systems or wind turbines have to cooperate within virtual power plants 
(VPPs) to (i) compensate fluctuation in the supply of single energy converters, and (ii) to exceed market 
entry barriers regarding the minimum power supply to be offered in a time frame5. Such a VPP (Bitsch et 
al 2002) might consist of several RES combined with controllable power plants like CHPs, battery storage 
systems, as well as controllable loads like heat pumps offering flexibilities for the control of the VPP. Ba-
sically also a cluster of flexible loads, e.g. appliances or EVs, can act as a VPP offering balancing power.  

In the recent past, several concepts for ‘static’ VPPs (e.g. Mackensen et al. 2008) were examined where 
the participating units – usually belonging to a single owner – are fixed and control is centralised. In our 
research cluster Smart Nord6 (Sonnenschein et al. 2012) we are going to expand these static concepts by 
methods for dynamical aggregation of units targeting a common power product represented by a power 
schedule. These dynamical VPPs – called clusters – cooperate only temporarily referring both to the actual 
situation at the market and to the prognosis of the expected feed-in from the participating units. As a con-
sequence, decentralised control methods are required to allow clusters to be configured independently of 
fixed control units. For a dynamical VPP, currently four control methods that together form its virtual con-
trol unit are being developed. In the following subsections we give a very short outline of these methods: 

a) Self-organising methods for the aggregation of units (RES, controllable plants, storage systems, 
controllable loads) to clusters (dynamical VPPs) similar to the approach mentioned in section 3. 
These clusters allow RES in combination with more flexible units to bid at the market. 

b) A method for the efficient representation of flexibilities, i.e. sets of possible power schedules of 
single units for a given time frame. This representation is needed for distributed methods to plan 
schedules of the controllable (i.e. flexible) units within a cluster. 

                                                      
4 The load minimum spans several hours and most of the devices are not active in this timeframe. 
5 Participation at the European Energy Exchange (EEX) currently requires the provision of at least 100kW electrical power. 
6 The research cluster Smart Nord is funded by the Ministry for Science and Culture Lower Saxony (MWK) through the „Nieder-
sächsisches VW-Vorab“ (grant ZN 2764). 



c) Distributed optimisation methods for generating power schedules for all units in a given cluster 
with respect to a power product that has been successfully traded at an energy market. This task is 
similar to unit commitment in the present power supply – a specific centralized scheduling method 
for charging/discharging of a cluster of EVs has been presented in section 2.  

d) Distributed methods for rescheduling units in a cluster in case of events such as deviations from the 
prognosis of the feed-in from participating RES or the (unexpected) outage of a unit. 

These four methods are combined in a multi-agent system where each unit is represented by its agent. 
In order to support methods of self-organisation, these agents are equally ranked, i.e. there are no specific 
coordinators and no a priori given hierarchy in the multi-agent system.  

 
a) Self-organising clusters of units 
Units can be clustered regarding technical, economical, strategic as well as dependability related criteria. 
In addition to economic aspects of individual units, knowledge from previously successful cluster compo-
sitions, reputation of potential partners, and reliability regarding the delivery of an offered product, partic-
ularly grid aspects have to be respected in cluster formation. So, cluster formation consists of four tasks 
(Beer et al. 2011): 
i. An initiating agent, e.g. representing a large PV system, decides for a marketable power product 

that could be offered by a cluster. Its decision depends on its own possible power schedule resp. 
prognosis that usually has to be supported by other units in a potential cluster, both in order to ex-
ceed market barriers and to realise a minimum reliability of power provision. 

ii. A spatially constrained neighbourhood of agents is formed referring to the physical grid topology, 
thus intending to incorporate the expected strain of local power grid assets due to the realisation of 
the cluster’s schedule into the clustering process.  

iii.  A cluster of agents supporting the common product organises by means of agent communication in 
the neighbourhood of the initiator. Clustering has already been discussed in section 3, but here some 
other criteria for cluster formation mentioned at the beginning of this section have to be respected.  

iv. During cluster formation, agents have to consent on a (fair) distribution key for the added value 
proceeded by the cluster after successful biding at the market and delivering the product. 

 
b) Representation of flexibilities in possible schedules 
A compact and efficiently manageable representation of the set of all possible schedules of a unit within a 
given time frame is a rather complex problem. Depending on the timely resolution of the schedule and the 
possible power settings of the units, the number of theoretically possible schedules can be in the range of 
10100. Additionally, distributed energy resources have to obey technical, economical or user defined con-
straints in their operation that restrict the set of feasible schedules. Within a cluster consisting of units 
owned by different individuals or companies, these constraints might be confidential and not to be com-
municated with the cluster. In (Bremer et al 2011) we presented a method for representation of complex 
structured sets of feasible schedules by means of support vector classification. This method not only hides 
constraints from being explicitly communicated to the virtual control unit of the cluster, but also allows 
integrating additional key values like cost or CO2 emission of the schedules into an optimisation process 
(Bremer/Sonnenschein 2013a). An essential advantage of this method is its ability to map each potential 
schedule to a ‘similar’ feasible schedule (Bremer/Sonnenschein 2013b). This feature is required for an ef-
ficient distributed optimisation technique because it allows for the navigation in an unconstrained search 
domain, thus significantly reducing the complexity of possible optimisation approaches. 

 
c) Distributed optimisation of schedules  
After having succeeded in bidding a product (i.e. cluster schedule) at the energy market, a cluster has to 
optimise the schedules of the participating units in such a way that the benefit of the cluster – and thus the 



value distribution to the participation units – is maximised. RES have to be integrated into this optimisa-
tion process on the basis of a prognosis of their power production. The result of this optimisation is an op-
eration schedule of the cluster combining the power schedules of the participating units. To this end, a dis-
tributed constraint optimisation technique for high-order constraints like COHDA (Hinrichs et al. 2013) 
has to be combined with the efficient representation of feasible schedules as discussed above. An addi-
tional important (but currently unsolved) question is how the reliability of product delivery can be affected 
positively by this optimisation. This aspect certainly requires a distributed multi-criteria optimisation to be 
implemented. Above all, the optimised operation schedule has to be approved by a power flow calculation 
(Wolter et al 2010) for grid compatibility. 

 
d) Rescheduling of units 
After having successfully bidden at the energy market, a cluster is bound to deliver the power product – 
otherwise it will be punished by a surcharge defined in the market rules. For several reasons, units in a 
cluster might be unable to deliver their contribution to the overall power schedule selected in the optimisa-
tion phase. Particularly RES possibly deviate in their power delivery from their prognosis. Therefore, a 
cluster must be able to reschedule power production between the participating units to meet the overall 
power schedule. Rescheduling again is a multi-criteria distributed constrained optimisation problem (Modi 
et al 2005). Besides economical and reliability related criteria, it is an important issue that the effects of 
the new operation schedule onto the power grid are similar to the original operation schedule in order to 
avoid or at least minimise the necessity for control measures of the grid operator (e.g. to react to violations 
of the local voltage levels). Therefore, in (Nieße/Sonnenschein 2013) we presented a method to integrate a 
static view of grid characteristics into the (re-)scheduling of units.  

5. Conclusion 

With the example of charging/discharging of EVs we have shown how intelligent units in a future smart 
grid can support local demand/supply matching. Clusters of small units can be scheduled for demand side 
management and hence reduce load peaks in a part of the grid. Self-organising, decentralised methods al-
low adapting clusters dynamically to changing sets of units and the predictions of their reaction to control 
signals. Such methods can also be used to organise dynamic virtual power plants allowing RES combined 
with controllable units to bid at a power market. 

In the near future, more and more units in the grid have to cooperate for a safe and reliable operation of 
power grids. This requires a smart grid enabling local supply/demand matching as well as provision of an-
cillary services in the distribution grid. Agent based, distributed control and self-organisation are promis-
ing methods to cope with the requirements of adaptivity and scalability of a smart grid. 
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